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ABSTRACT

In the early 1980’s John J. Hopfield aeveloped a
recurrent network based on a model of biological neurons. In
his model, each neuron accepts inputs from all o6ther neurons
in the network, modifies each input with a weight and converts
their sum to an output via the non-linear sigmoid transfer
function., This output is then fed back to each of the input
paths where the input signals are updated before the next
summation. It has been prcposed that this network can be
successfully applied to the problem of system parameter
identification where the weights are functions of the system
states and the network, after being allowed to process a
continuous block of system states, is guaranteed to converge
to the system parameters. This thesis explores the concepts of
network stability and solution existence for a time-invariant
system. It is shown that the ne¢twork will converge as expected
provided the steady-state solution falls within the range of
values of the sigmoid transfer function. Experimentation with
the network when not all system states are measurable revealed
that knowledge of the actual system parameters is necessary to
obtain convergence because of large error between the actuai
and estimated system states, showing that minimization of this
error must take place before the network is integrated.
Finally, it is shown that as system parameters vary, the
Hopfield network will track the parameter changes provided the
system remains persistently excited by the input.
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I. INTRODUCTION

A. BACKGROUND OF THE NPS AUV II PROJECT

The Naval Postgraduate School’s Autonomous Underwater
Vehicle II (NPS AUV II) supports the second generation of
projects focusing on the development of an unmanned,
untethered vehicle possessing sufficient, self-contained
intelligence to perform a broad range of missions while being
able to respond to unplanned situations and take appropriate
actions. The project is part of the U.S. Navy’s ongoing
studies of unmanned, sub-surface, marine vehicles and their
usefulness in an expanded role in the future Navy. As
described in Healey et al., [Ref. 1], the NPS AUV II is the
first of its kind to attempt a Mission Planning Expert System
which will serve as a framework within which all of the
vehicle’s logical operations and resulting actions will be
carried out.

The vehicle’s missions might consist of any of the sub-
surface tasks currently being conducted by manned surface and
sub-surface vehicles and by free-swimming personnel. It would
be required to successfully navigate within a prescribed
operating area while avoiding all stationary and moving
obstacles but at the same time completely surveying any

objects which meet the "special interest" criterla of its



mission planning system. Its mission would also ‘include
storing and analyzing data before deciding future courses of
action appropriate to its mission and be ¢apable of eventually
down-loading all such data for human analysis. Unplanned ’
situations might encompass sudden changes in the vehicle’s
operating environment such as shifts in current direction and
speed, the sudden presence of belligerent animals or vehicles,
faults in its own logic or operating systems, or errors in its
mission program (i.e., incorrect navigation information).
The capabilities of such a vehicle are far removed fron
those of any similar platform in use today. Such a vehicle as
NPS AUV II must ultimately possess complete "knowledge" of its
own operational abilities, similar to what humans refer to as
"motor skills," while at the same time be able to "think"
about various responses and courses of action and decide which
would best suit the goals of its mission. Such capability, and
the numbingly vast array of possibilities it entails, can not
possibly be programmed into a computer as a series of tasks.
The prospect of a so-called "thinking machine" is not so far-
fetched, however, and this is where the theory of Artificial

Neural Networks (ANN) may evéntually find application.

B. ARTIFICIAL NEURAL NETWORKS
The origin of ANN may be traced back to as early as 1943,
when McCulloch and Pitts wrote their landmark paper "A Logical

Calculus of Ideas Immanent in Nervous Activity" [Ref. 2].
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Since then scientists, engineers, physicists, and biélogists
have been studying ways to mathematically model the human
brain’s ability to accept inputs from many, completely
different types of sensors, analyze that data, decide on a
course of action, trigger the proper response in its
operational appendages, and learn from the results of that
response., The focus of the research efforts in the field has
been centered on a mathematical relationship called a neuron,
akin to thé biological brain cell of the same name, whose
output is a weighted summation of the inputs from other
neurons and which is then used either as an input to other
neurons or as part of the output of the network as a whole.
Most importantly, for application to "thinking machines," the
output of any particular neuron can be used in a feedback loop
to modify the weights associated with its own inputs. This
type of network, known as "recurrent," shows a minimal ability
to "learn" that a particula: pattern of inputs produces a
corresponding series of outputs based on the values of the
input weights, marginally like the functioning of short-term

memory in humans.

C. ANN AND NPS AUV 1II

In examining the need for NPS AUV II to "know" its own
capabilities and limitations and the usefulness of ANN in
"learning" a pattern associated with a particular input

environment, a connection can be made with neural networks for



diagnostics [Ref. 3] and system parameter identification
[Ref. 4]. It has been proposed that a Hopfield network [Ref.5]
[(Ref. 6] can be configured in continuous time to aécept a time
history of the state-space response of a dynamic system

represented by the equation

k=Ax+Bu (1)
where x 1is a vector of state variables, % is its time

derivative, and u is fhe system input, and identify the system
parameters represented by the matrices A and B, System
parameter identification provides the vehicle with its own
blueprint for input-output response upon which it will base
its decisions regarding the proper actions needed to effect
desired results. By continuously updating its own database as
system parameters change, such events as internal faults or
external, environmental limitations can be detected and
diagnosed.

The focus of this thesis is on exploring the method of
Shoureshi and Chu [Ref. 4] to determine if it might, indeed,
be useful for vehicle system parameter identification in real
time. The next chapter provides a brief history of ANN,
focusing on the Hopfield recurrent network and how it is
adapted by Shoureshi and Chu to system parameter
identification. Chapter III presents the results of stability
investigations of the Hopfield network formulation and the

speed of convergence to expected solution values. Chapter IV



delvés into study of the use of full-state and reduced-order .
observers with the Hopfield network to determine if the
network will correctly identify system parameteré when not all
system states are measurable. Chapter V is a study of the
ability of the network to track the pattern of system
parameters as they vary with time. Finally, in Chapter VI a
summary of the strengths and limitations of Hopfield networks
and recommendations for future research in related fields are

presented.
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II. PARAMETER IDENTIFICATION AND HOPFIELD NETWORKS

A. INTRODUCTION

This chapter begins with a brief history of the study of
ANN and presents an overview of the first ANN algorithms,
which continue to provide a foundation for current research.
Emphasis is placed on the development and theory of Hopfield
networks, not only because the Hopfield model is the basis for
the research in this thesis, but because it also helped infuse
the flagging ANN research community with new energy in the
early 1980’s. Much more detailéd analyses of the entire
history and scope of ANN research, including that which has
been conducted since Hopfield’s efforts in 1982-1984, can be
found throughout Wasserman [Ref. 7] and NeuralWare [Ref., 8].
Those references also serve to guide the history and

background information in this chapter.

B. HISTORY OF ANN

As mentioned in Chapter I the impetus for the study of
mathematical models for brain activity began with McCulloch
and Pitts in 1943, Their subsequent work focused on the neuron
model shown in Figure 1, reprinted from Wasserman [Ref. 7:p.
28], which shows the neuron modeled as a summation of several
weighted inputs. The result of the summation is then compared

to some threshold value: if the threshold is exceeded, the
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output is§ 1; otherwise it is 0. This basic system, which
became the foundation on which the first generation of ANN was

built, is represented mathematically as

N
1, if Y W.x, > THRESHOLD

iwl

V= . (2)
0, if ¥ W.x, < THRESHOLD

iwl

In the 1950’s and 1960’s this simple system was greatly
expanded into multi-layered networks, with variations being
applied to such diverse fields as pattern classification
(Rosenblatt ([Ref. 9]), signal filtering (Widrow [Ref. 10]),
and macroscopic intelligence (Minsky [Ref. 11}). All such
applications were based on 2 learning rule proposed by Hebb
[Ref. 12]) which assumes a multi~-layered network where neurons
are interconnected as well as available to receive and
transmit external inputs and outputs. Basically, where two
neurons, represented by subscripts i and j, are connected to
each other and to other neurons in the network, the value of
the weighted connection is adjusted based on the values, or

"excitation levels;" of the two neurons. In equation form,

W, (t+1) =W, (t) +6,8, (3)
where W, = the weight of connection from i to j
0, = the excitation level of neuron i
9j = the excitation level of neuron j

The weights are increased, and the connections strengthened,

each time the vector of inputs produces excitation levels for
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both i and j equal to the binary value 1. As each successive
vector of training inputs is applied, a pattern of weight
values emerges where often-used paths are strengthened well
above the levels of little-used paths. Provided the training
data is of sufficient quantity, this pattern will
theoretically produce a desired vector of output values
equivalent to those of the training sets and the network can
be said to have learned the correct response to a given input.

In subsequent uses of Hebbian learning, the manner in
which the products of the two excitation levels is obtained
has been altered through various functions, Wasserman [Ref.
7:pp. 99-100) uses the term "activation function" to describe
a class of functions where V=F(©®). The function F may be a

simple threshold function where

1, if ©> THRESHOLD
V= , (4)
0, if ©< THRESHOLD

and THRESHOLD is some constant value. Later variations have
modeled F as a simple linear function with or without some
gain multiplier, while more recent forms have sought to
emulate the actual activity of a biological neuron. This last
form figures prominently in the work of Hopfield [Ref. 5]
[Ref. 6] and will be the subject of extensive discussion in
Section E of this chapter.

The claims that the proponents of ANN were making

regarding the usefulness and wide application of their



algorithms led Minsky to apply rigid mathematical tests to the
theory of "perceptrons," a term coined by Rosenblatt [Ref. 9]
to describe his variation of the McCulloch-Pitts algorithm. In
their book Perceptrons [Ref. 11] Minsky and Papert proved that
the perceptron algorithm was not able to solve the simple,
"exclusive-or" (XOR) problem, which is linearly inseparable.
A detailed analysis ofvthis shortcoming 1is presented by
Wasserman (Ref. 7:pp. 29-33], who represents the XOR problem
in tabular form for a perceptron consisting of one neuron and
two inputs, designated x and y. Table I is reproduced here,
where the values of x and y are binary and the output, ©,
follows the XOR rule.

TABLE I. THE "EXCLUSIVE--OR" PROBLEM
L

X 2 \'4
0 0 0
1 0 1
0 1 1
1 1 0

The equation for the summation of the neuron inputs is
O = xw, +yw, (5)

where the output V of the neuron takes the form of Equation
(4) where THRESHOLD can be any constant value between 0 and 1.
Minsky proved that there is no set of weights, w; and w,, that

will complet=ly duplicate Table I, regardless of the threshold

10



value. This revelation, among others, proved a heavy bléw to
the study of ANN and greatly contributed to the dearth of

research in the field throughout the 1970’s.

C. HOPFIELD’S CONTRIBUTION

Though limited work on ANN continued following Minsky’s
book, the field was fully revived in 1982 after a presentation
by John J. Hopfield to the National Academy of Sciences in
.32 [Ref., 5]. Hopfield began with the system formulation
proposed by McCulloch and Pitts, where the basic network
consists of a set of neurons which compute the weighted sum of
the inputs, then set the output to zero or one depending on
their relation to a set threshold value. What made the
Hopfield network unique, however, is the facc that the output
of each neuron is fed back to the inputs of all other neurons.
(In the original formulation, Hopfield believed a neuron could
not be fed back to itself. This has since been abandoned as a
condition.) An example of this "recurrent" network is shown in
Figure 2, reprinted from Wasserman [Ref. 7:p. 95]. The

activity of a neuron is represented as
N .
€9j=§;w”vi+1j (6)

where the neuron output

v o lr if € > THRESHOLD,

(7)
3 0, if ©. < THRESHOLD
3 3

11



Figure 2. Typical Recurrent Network

12




Equation (6) is an expanded version of the original algorithm;
where I, is an external bias input. This form of the equation,
and others that follow, appear in a subsequent paper presented
by Hopfield to the National Academy of Sciences [Ref. 6]. The

basic Hopfield learning rule, contrasted with that of Hebb, is

N
AW, -f;jz; (2V,-1) (2V,-1) (8)
AW, =AW,
In Equation (8), V, are values at a k*® iteration level in the
training (learning) process and AW,, updates W;; from k to k+1
as k = e, It can be seen that the connection weights increase

when the output of a neuron is the same as the input but the

weight values decrease whan the input and output differ.

D. THE ISSUE OF STABILITY

A major question which arose regarding the recurrent
Hopfield network was that of stability. This clearly had not
been a problem with perceptrons because of their feed-forward,
static architecture. With the Hopfield net, however, a proof
was needed that the network would converge to a stable state
for all inputs. Building on work by Cohen and Grossberg [Ref.
13], Hopfield theorized that his model followed the activity
of the bounded energy function represented by

N N N N
E = -%2 YW VY, - 2; IV, + 12; gV, (9)

AT 1

13
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where g is a set threshold value, I, is a bias, and the energy
of the network must decrease or remain the same as it changes
state. Thus, the change in energy due to a change in the value

of the neuron state V; is
. N
AE = -Avi’[z WV, +I,-g, ] (10)
ol

It can be seen that the sign of the expression in the brackets
is inversely proportional to the change in energy E.
Substituting Equation (6) into Equation (10) yields

AE = -AV, [{jel -q, ] (11)

3=

or, if ©, is greater than the threshold g,, the bracketed value
is positive and the output of neuron i must change in the
positive direction or remain constant. This means that AV, can
only be positive or zero, so AE must be negative, or E is
decreasing. If ©, < g,, the bracketed value is negative and AV,
must be negative or zero so again AE must be negative.
Finally, if ©, = g,, AE is zero and E remains constant. Since
under all conditions E is either decreasing or unchanged, this
function, which is bounded, must eventually reach some bounded
minimum value, proving the eventual stability .of the network

states.

14
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E. THE CONTINUOUS HOPFIELD NODEL

Having proven thdt his discrete-state médel was stable
under all conditions,,ﬁopfield sought to expand the model to
cover continuous systems, which represented a more realistic
application [Ref. 6]. The original model, where the change in
states of a neuron is represented by a binary "on-off" firing,
was retained for the continucas formulation. However, Hopfield
noted that actual state chan¢ :s were non-linear and lagged the
outputs of other neurons fr m which its inputs were fed. He
modeled this characteristic as a simple RC circuit, with input
capacitance C, neuron resistance R, and the impedance between

the output of neuron j and input of neuron i designated W.

Thus,
a0, ¢ (2)
Champeme =Y WV, - 1+ (12)
i‘a‘t— 3‘21 133 .R-i i
where
0, =g (V) (13)

The input-output relation represented by the function g, is

the non-linear "sigmoid" function

1

9(0) = —p (14)

where A is the learning rate, a coefficient which determines
the slope of the linear portion of the sigmoid function.

Figure 3 is a plot of the function for A=0.1.

15
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Figure 3. Sigmoid Function for A = 0.1
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For the purposes of determining stability the ehergy

funcétion from Equation (9) now becomes

N

\/
.- l N ) N N 1 P o 15
E .zgf\:_;n”viv, +§ (E ){gL (V)dv+§ IV, (13)

The derivative with respect to time is

dE'_N av, |« _91 (16)
= ;.ai_jz-;wuvj 'R;“‘

Substituting Equations (12) and (13) into Equation (16),

N
%—5— ) e V) (%V_éJ (17)

Since g,”*(V,) is a monotonically increasing function and C; is
positive, then all terms in the right-hand side of Egquation
(17) are positive and dE/dt is negative. If dE/dt = 0, this
implies that dV,/dt = 0 and the neuron is not changing state,
so a minimum energy has been reached., Hopfield’s stability
proof, however, is not too convincing as the energy function
in this case is not necessarily bounded and can, under

circumstances to be shown, diverge.

F. THE HOPFIELD NETWORK FOR PARAMETER IDENTIFICATION
Hopfield’s method of modelling his network as the

minimization of an energy function was adapted by Shoureshi

and Chu [Ref. 4] for use in minimizing the eguation error for

system parameter identification. This has far-reaching

17
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application to the contrél system field because having full
knowladge of a system’s dynamics in the form of parameter
identification is essential for stable control, and leads to
adaptive systems if parameters change.

The state-space form of any continuous system is

represented by

£(t) =Ax(t) +Bu(t)
y(t) =Cx(t) (18)

where x(t) is a vector of system variables, or states; x(t)

is their time derivative vector, u(t) is some vector of time-
varying inputs to the system, and y(t) is a vector of
measurable outputs from the system response, The coefficients
A, B, and €, are matrices which define the physical
characteristics of the system. These matrices may depend on
time, but will be modeled here as time~invariant. The equation
error associated with incorrect estimates of the parameters

when u(t), x(t), and %(t) are fully measured, becomes

&(t) =x(t) -Ax(t) -Bu(t) (19)

The goal of successful system identification is to minimize
the error between the estimated and actual system parameters.
A convenient method is to minimize a positive-definite
function defined as the square of the equation error of the

system, Such a function might be

18



J=tr{E{g(t) ¢ (t)h (20)
Because of the time-variance of &(t), expected values are used

to formulate J, and the trace of the matrix of error values is
taken as &dn average of the total error. Thus, after

substitution of Equation (19) into (20)

J=E {V (H/R)V-2VHx +%/'x } (21)
where
H=diag {x/ (t),u’ (t)}, i=1,n; BeRrxm ) (22)
and
V' =la, b, ... a8, b, ... 8, b,) (23)

and a;, b, are the i*" rows of A and B.

A conceptual and mathematical similarity between J and the
energy function E of Hopfield’s papers can now be seen. The
point is to minimize the error function J to produce a least-
squares equation error of the continuous control system, much
as Hopfield showed that his network minimized the energy
function E. Furthermore, identification of the proper system
parameters requires that minimization of J be conducted with
respect to the vector of neuron outputs V. Calculating that

partial derivative yields

aJ _ _ .
W-E{(H’H)V} E{R'x) (24)
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At this point, a direct connection is made between the state-
space form of the system dynamics and the Hopfield model.
Equating Equation (25) with Equation (12) and assuming R; =@
and C;=1,

A -a—"z" (28)

Now, in comparing Equations (25) and (24) it can be seen that

w=-{(g®)} 1=E{(@%)) (26)

The secret of system parameter identification wusing the
Hopfield model is revealed by Equation (23) to be the steady-
state solution of the network. Further, the performance index
gradient in Equation (24) is contained in the time derivative
do/dt.

Though the -association between the adaptation of the
Hopfield network for system parameter identification and
Hopfield’s own proof of the minimization of a bounded energy
function has been shown, it can not yet be said that stability
for the new formulation has been proven. This proof is
contained in Appendix A and is based on showing the
minimization of the positive-definite function J. The proof
shows that the time derivative of J is always negative and
therefore J will always seek a minimum value.

It is now clear that to use the Hopfield model for system
parameter identification, one must collect all of the state

variables of the system response, as well as the input, and

20
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use them to formulate the Hopfield weight matrix W and bias
matrix I. Then,‘one need solve the system of first-order ODE'’s
of Equation (25) for the vector V. The solution obtained for
V will, by definition, be a vector containing the elements of
the A and B matrices of the state-space form of the systenm,
and system parameter identification will be achieved.

Figure 4 is a block diagram showing this process. The
"Averaging System" is a routine which accepts the time history
of the system input and its state-space responses and
formulates matrices W and I averaged over a certain time
interval. This process was developed as a result of knowledge
gained from experimentation and is explained in greater detail
in the next chapter. The bias matrix I is added to the
negative product of the weight matrix W and the vector of
previous neuron outputs V. This sum is multiplied by a scale
factor "sl" to speed the response of the system and the result
is a time derivative which, when integrated, yields a vector
of the weighted summation of inputs from all other neurons.
This vector is operated on by the non-linear activation
function g to produce the output of the current neuron.

The following chapters in this thesis present the results
of extensive experimentation with the theory of system
parameter idenlification using the Hopfield network. Using a
test case for a simple, time-invariant, second-order system
where the response and the parameters are known, the Hopfield

model is implemented in computer software to solve the
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w
¢

AVERAGING
SYSTEM

N

x(t) x(t) u(t)

Figure 4. Block Diagram of Continuous Hopfield Network
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characteristic system of first-order ODE’s. Experiments are
conducted using both linear and non-linear threshold functions
g, and the issue of stability of the network is thoroughly
explored. As an attempt at a more realistic scenario, the
performance of the network is evaluated when the system
response is not completely known, that is, not all state
variables are measurable. Finally, in a case that would most
certainly arise in the operating environment of NPS AUV 1II,
parameter identification accuracy is evaluated when the

parameters themselves change with time.
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III. RESULTS O7 THE HOPFIELD SIMULATION

A. INTRODUCTION

In this thesis, the theory of Shoureshi and Chu [Ref. 4]
using the Hopfield algorithm for parameter identification has
been applied to a known, second-order system herein referred
to as the "test‘case." This test case is the same as that
investigated in [Ref. 4] but the solutions have been found
completely independently. The purpose of this exercise is to
investigate the important aspects of the Hopfield algorithm as
related to global stability, speed of convergence, most
efficient formulation, and accuracy in identifying known
parameters. This chapter provides a detailed analysis of this
test case and results of the Hopfield formulations using both
linear and non-linear transfer functions, the non-linear

function being exclusively the so-called "sigmoid" function.

B. LINEAR TRANSFER FUNCTION
The test case system chosen is an oscillatory , second-
order system with both states excited by the input signal,

u(t). The matrices of constant parameters are

_[--04248 12.566 | _ 1.0 27)
-12.566 -.94248 2.0
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The equations for the system in state-space form are written

as follows:

X b4 2
\.l = [A] -1 + [B]{ll_} ‘8)
X, X1 '

where u=sin(t) is the system input. This input function was
chosen to produce persistent, system excitation. Figure 5 is
a plot of the state variable response of this system along
with the input u for initial conditions arbitrarily chosen as
X=[1 1].

Appendix B contains the computer code for this problem
formulation, implemented using MATLAB software. The first step
in the main program, called "neu," obtains an appropriate time
history for the two state variables and their time derivatives
from which the weight and bias matrices, W and I, are formed.

This step is necessary because this approach to system

identification requires measurement of x, %, and u. For this,

a Runga-Kutta second- and third-order numerical integrator,
provided by the MATLAB software, generates response data for
the system of two, first-order, ordinary differential
equations (ODE) making up the state-space formulation. The
subroutine "system" contains the state-space equations where
A is the dynamics matrix and B is the gain matrix. The MATLAB
numerical integrator, a subroutine called "ode23," operates on

these equations given the time interval specified by "to" and
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Figure 5. Test Case System, State Variable Response
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"tf", and by the initial conditions "x0o". For this formulation
to=0.0, tf=1.0, and xo=[1 1]. Subroutine "ode23" chooses non=-
constant time intervals based on the speed of convergence of
the solutions and returns the values of t, Xx,, and x,.

A loop in the main program reintroduces these values for
t, %, and x, into the subroutine "system" to obtain the
corresponding time derivatives of x, and x,, designated £; and
f,. The input u=sin(t) is calculated given the time steps
provided by "ode23." Program "neu" formulates the matrices W

and I from the time histories of X,, X, X%X,, X and u, as

1r a=p!
presented previously. As the main program was firvst written,
W and I were formulated for each time step, but this quickly
proved to be unworkable as W is a singular matrix for each

time step. As such, W' does not exist, so the steady state

solution
v, =-W11/ (29)
likewise does not exist.

To investigate this problem further, W was formulated as
the average for each time interval of state variable
measurement and the upper singular values (usv) of the
eigenvalue pairs were calculated and plotted. Figure 6 is a
plot of the usv’s of the eigenvalues of W versus the number of

- time steps used to formulate W before averaging the elements
to obtain a final W. Each curve shows a pair of singular

values (the matrix is symmetric) and it can be seen that until
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the number of averaging steps exceeds 30, ' one pai; of‘
eigenvalues is too close to zero to ensure the stability of
the network solution. From this point on, 50 was taken as the
appropriate number of time steps over which to average W. An
optimization of this problem was not attempted but might be a
subject of future research. To check that this was an
acceptable formulation for W, the steady-state solution for
the system parameters, Equation (29), was calculated for each
time step of the state-space response. Figure 7 shows a plot
of this steady state solution and it can be seen, as expected
when the input signal is free of noise, that within three time
steps the proper 0,, is returned. Note that in the figure, as
in the computer code, © is denoted "th."

Once the proper number of averaging steps was determined,
it was necessary to reset the vectors for £ and x to contain
only that number of elements. The main program, as currently
written, cycles these re-sized vectors through the subroutine
"system"'to obtain their corresponding time derivatives in the
matrix £. With this information the matrices W and I are
formulated by multiplying these column vectors of x, £, and u
as specified to produce each individual eiement, which in turn
is divided by 50. What results is a 6X6 weight matrix W and a
6X1 bias matrix I which are averaged for the system state over
roughly the first one second of time.

Subroutine "hop2" contains the Hopfield algorithm and

comprises the next phase of the computer code. Program "neu"
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calls "hop2," entéring with W and I and integrating the series
of six, first-order, ODE’s to produce a solution contained in
the vector ©. As before, the equations of the systém are :

ae 6 6
R IL faed (30)

iel Jul

The linearity of this particular system lies in V, which for

this first test case is represented by:

v=0 (31)

A scale factor, sl1=50, multiplies W and I to increase the
response speed.

Program "neu" uses a simple Euler integration, where it
was determined by experimentation that dt=.02 produced
acceptable convergence of the solution to the final values of
© provided integration was carried out over 100 steps. As will
be discussed in the section on non-linear transfer functions,
it was discovered that the actual, desired solution for the
system parameters is returned in V, not ©. This was overlooked
at first because of the constraint imposed by Equation (31),
which essentially means that there was a unit transfer
function for the linear case.

Figure 8 shows a plot of each individual element of ©
normalized with respect to the actual system parameters versus
the non-dimensionalized time of Euler integration. It can be
seen that all elements converge to the expected values within

o,t=20. Figure 9 is a plot of the normalized © vector and
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shows that convergence to the actual system parameter vector

©, occurs within @,t=15.

C. NON-LINEAR, SIGMOID, TRANSFER FUNCTION

The case where the Hopfield network was implemented using
a linear transfer function has been thoroughly investigated.
It has proven useful for the purposes of exploring the
important aspects of stability associated with this problem.
In addition, ‘the linearity of the system guarantees that a
solution will be obtained provided W is not singular. The non-
singularity of W is ensured by averaging over an appropriate
time interval.

The network as described is not strictly a Hopfield
network, however, because the linear transfer function does
not accurately model the response of a neuron. In Hopfield’s
formulation [Ref. 6] the transfer function which converts the
output of each neuron is more accurately represented by the
non-linear sigmoid function in Equation (14) where A is the
learning rate and is positive but less than one. The plot of
this sigmoid function, Figure 3, shows its relationship to the
ideal step change from zero to one.

The sigmoid function is the basis for the next set of
experiments which were conducted with the test case used
previously. Initially, all parameters remained the same as for
the 1linear network. Additional parameters that needed

consideration were the learning rate, A, and the sigmoid



function gain, G. Prior toé6 conducting the experiments iﬁ was
not immediately apparent that G would be necessary, but its
eventual inclusion proved critical and will be discussed
further,

Figures (10) and (11) are two plots of the sigmoid
function which highlight the effect of varying A and G. It
should be noted that in order to duplicate, and closely
follow, the test case used in [Ref. 4], the form of the

sigmoid function was altered to

9(®) ek.l_é_m)l] (32)

In Figure 10, G is held constant at 1 while A is varied from
0.1 to 1.0. The function converges asymptotically to +1 and -1
for all A, but the slope of the linear portion of the function
increases dramatically with increasing A. Figure 11 shows A
held constant at 0.1 while G varies from 10 to 50. The
asymptotes vary directly with G with an equally dramatic
increase in slope as G increases.

Initially, A was set at 0.1, As the necessity of G was not
yet recognized, it was not included, effectively making G
equal to 1. Figure 12 shows the results of this run, revealing
that each of the coefficients in the system output vector, V,
converges within the range +1 to -1. Experiments with various

values for A, as well as expanding the time interval for
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Sigmoid Function as Gain, G, Increases from 10 to 50, lambda=0.1
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integrating the network, proved fruitless in changing this
incorrect "solution."

The reason for this failure to converge to the expected
results with what was believed to be Hopfield’s original
formulation became apparent once the network was analyzed
mathematically with g(®) included. This system formulation is

as follows:

N

de
= " ',2; W.,g(O,) +I, (33)

As t =0, (dO,/dt) = 0, so

N
-z;wug ©,) +I,=0 (34)
j-
and
= -1
g(6,) -; (Wi X, (35)

Note, hpwever, that the right hand side of Equation (35)
returns the steady state values of the system parameters while
the left hénd side by definition must vary between -1 and +1,.
Thus, the output g(@) is constrained to converge to these
values. This response provided the clue that some gain
contained within g(@), which would extend the range of the
sigmoid function to encompass the expected values of the

system parameters, is required for the existence of a steady-

state solution.
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When devising a method to determine the proper values of
G and A to use, it was decided to maintain the same unit value
for the slope of the linear section of the transfer function.
For unit slope, then, the derivative with respect to © of

Equation (32) must equal one at ©=0, or

3800 ~12(-1) (1+e™)* (-he™)) (36)
and
gg)|9_0=1 =G[-2(2) "% (-A) ] (37)
SO
1 -G(%.) (38)
and
G-.% (39) -

A value of G=15 was chosen to encompass the largest of the
expected values of the system parameters, resulting in
A=0.133, so these values were incorporated into the Hopfield
network. Figure 13 shows various plots of the sigmoid function
when unit slope is maintained according to Equation (39).
Appendix C contains a listing of the new computer code
incorporating the sigmoid transfer function for network
formulation. The main program, called "neu2sig," calls a
reformulated Hopfield network subroutine "hop2sig," and

integrates the series of equations where V now equals g(@),

40



Sigmoid Function for Lambda from 0.01 to .1, with G=2/lambda
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the sigmoid function. As discussed previously, the system
parameters are returned in V, not ©, so a plot of the elements
of V, as the Euler integration proceeds, reveals the behavior
of the network as time advances. Figure 14 is a plot of the
separate elements of V normalized with respect to the
individual, expected values of the system parameters, A and B,
showing their convergence within ,t=20. Figure 15 is a
similar plot, except that V is plotted as a vector normalized
with respect to the vector of expected system parameters. This

plot shows convergence to within @t=15.

D. REMARKS

It has been shown that the Hopfield network algorithm can
be used to identify the parameters of a simple, time-
invariant, second-order system provided that the expected
values of the parameters lie within the range of values of the
non-linear transfer function used to convert the output of
each neuron. The application of this method to real-world
system identification is limited, however, by the necessity of
having all states of the system fully measurable. A more
realistic, and therefore more important, situation is one in
which at least one system state is not observable, meaning
this state must be estimated before the system parameters may
be identified. The next chapter details the formulation of a

Hopfield network for the current second-order test case, with
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thé added complication that the state denoted xl'is not

measurable.

45



IV. PARAMETER IDENTIFICATION USING STATE OBSERVERS

A. INTRODUCTION

The need for observers in modern control system design
where one or more states can not be measured has been
thoroughl_ explored and documented. The original test case as
previously used is now adapted to the exploration of state
observation applied to the Hopfield network algorithm,
Although the full states have been generated previously and
are known, this Chapter examines the case where only the state
variable x, 1s measurable, while x, must be estimated. This
estimated variable, denoted .9 will be used with an estimated
variable &, to formulate W and I. Finally, it will be
determined if the Hopfield network will correctly identify the

original system parameters under these conditions.

B. TFULL-STATE OBSERVER

For the exploration of this problem, the computer code
developed origina.ly was left largely intact. However, the
subroutine "system," used previously to generate a time
history of the state variables, has been replaced with a
subroutine called "observer" which contains the code necessary
to create a time history of the estimated variables &, and %, .
Appendix D contains the pertinent computer routines for this

problem. Note that in the code & and &, are contained in the
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matrix "xhat," while the time derivatives _Xj_l and gz are
contained in "xhatdot."
Subroutineé "observer" now contains a system of four first-

order ODE’s of the following form:

< 2{-1 .’.(.1 V
(= (A + [B]{u)
| X, 2, (40)

,

&, X
e | [B,){ u} + [KC,]

-2 2

2,
1> ‘= [A,-KC,]
2

2

The matrices A, and B, are the observer system parameters which
initially are set as exactly equal to the actual system
parameters A and B in Equation (27). The matrix €, is the
output matrix, which in this case is [0 1]. The purpose of
this "perfect estimation" of the actual system parameters is
to see if the Hopfield network can correctly identify the
actual system parameters based on state variable data produced
by estimation. System identification through the use of an
observer when the actual system parameters can not be
accurately determined will be explored later in this chapter.
The feedback gain matrix K, which is ghe key to minimizing
the error between the actual and estimated states, is found
using the dual form of the 1linear gquadratic regulator
subroutine "lqr" provided by the MATLAB software. This
subroutine returns the optimal value of K such that the

feedback law
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= -Kx (41)

minimizes the cost function
J =f(x/Qx+u'Ru)dt (42)

For purposes of this solution Q was chosen to be an identity
matrix and the control weight R=.01, constrained by the state

equation

&s‘z{_-}B (‘3)

The main program for this new problem formulation is
essentially the same as for the fully measurable system but
was renamed "neuobs." For the sigmoid function A=0.1 and G=20,
which were found to give slightly faster convergence of the
solution to the expected values., The major difference in this
main program is that W and I are calculated using R, &, gd,

g&. As before, the final solution is returned in the elements
of the vector V.

Figure 16 shows the convergence of the elements of V to
the expected values of the actual system parameters. The speed
of convergence 1is essentially unchanged from that of the
previous system where all states were measurable, as shown by
the convergence of all within the non-dimensional time value
o,t=20., Figure 17 shows the normalized vectocr |IV]|]|; again,

the convergence rate is very close to that of the fully

measurable system,
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The next step in exploring the observer problem was to
determine if the parameters of the system could be
successfully identified for that case where the actual system
parameters were not accurately known. For this phase of the
problem the following observer matrices were chosen as initial
estimates which differ substantially from the actual
parameters of the test case:

_ ~-.7 10.0 =2.44 (44)
AC [-1000 —07 ] no [1039]

Figure 18 is a plot of the resulting solution vector, V, where
each element has been normalized over the expected value of
its corresponding system parameter, and it shows that the
network does not converge to the expected values of the actual
system parameters. Table II shows the actual values of the
system parameters, the values of the imperfectly estimated
system parameters, and the steady-state solution of the
network using the observer. It can be seen that the steady-
state of the network returns something close to the value of
the estimated parameter for V. (3) but all other values differ
substantially from either the estimated or actual system
parameters. Since this data is inconclusive, Figure 19 was
generated which is a plot of the actual and estimated system
state responses. This plot shows that the estimation of x, and
X, begins to deteriorate rapidly at about t=0.7 and becomes so

severe that it may indicate the presence of instability in the
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Actual and Estimated System Responses
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TABLE II. COMPARISON BETWEEN ACTUAL SYSTEN PARAMITERS

AND SOLUTION USING FULL-STATE OBSERVER
L )

A, B A, B, V.
- 0.9425 - 0.7000 - 1.1368
12.5660 10.0000 13.3263
-12.5660  -10.0000 -10.0132
- 0.9425 - 0.7000 - 0.5991
1.0000 2.4400 9.8516
2.0000 1.3900 1.6147

observer. The inability of this system to produce an accurate
estimation of the system response, which leads to inaccurate
identification of system parameters, reveals the need for
additional study into a method for minimizing the estimation
error of the system response before formulation c¢f the weight
and bias matrices. Such a sstudy was not conducted for this
thesis but is deemed essential before implementation of a

Hopfield network in a real-world application.

C. REDUCED-ORDER OBSERVER

The previous section dealt with the full-state observer
applied to the Hopfield network, where the estimation of the
entire state was returned if even one state variable in a
multi-variable system was not measurable. As noted in
Friedland [Ref. 14], however, it was desirable to formulate an
observer which need only return estimation of those state

variables not actually measured while omitting the need to
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estimate variables already known. A reduced-order observer was
used for this purposé of creating a time history of the state
variables for the Hopfield network test case.

Friedland presents two methods of formulating the reduced-
order observer depending on the nature of the eigenvalues of
the submatrix A,,. For the first method, the eigenvalues of A,
must be known to be negative, or that the real parts of the
poles of this submatrix 1lie in the 1left half-plane
sufficiently far from zero to ensure stability of the system.
In this case, the equation to estimate the unmeasured

variables is quite straight-forward and takes the form

& =A Cly+A,R +Bu. (45)
However, when the eigenvalues of A, are not known or if A,, is
not stable, Friedland presents a more general method to
estimate the unmeasured states. This second method was not
needed for the test case examined in this thesis and it is not
anticipated to be necessary for application to NPS AUV II, so
its formulation has not been developed here.

Appendix E show: the computer code for the chosen observer
method. The modified subroutine "observer" contains a system
of three first-order ODE’s consisting of Equations (28) and
(45) adapted to estimate gd. The main program "neuobs" selects
X, and &,, retrieves % and éd from the subroutine "observer,"

and uses them in formulating W and I. From there the network
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algorithm continues as before. Figure 20 shows the individual
elements of V as they converge to the expected values of the
system parameters with a speed comparable to that of the fully
measurable system.

As with the full-state observer, experiments were
conducted where the system parameters were imperfectly
estimated as being those from Equation (44). Figure 21 shows
that once again, the network solution converges to values
substantially different from the actual system parameters as
shown by the comparison in Table III. For the situation where
X, 1s measurable but X, is estimated, the steady-state solution
of the network converges to the imperfectly estimated
parameter values A (1,1), A, (1,2), and B,(l). For the other
three solution vector elements, convergence to some values

close to neither the actual nor estimated parameter values has

TABLE III. COMPARISON BETWEEN ACTUAL PARAMETIRS AND

SOLUTION FOR REDUCED-ORDER OBSERVER
S

A, B A, B, v.,
- 0.9425 - 0.7000 =~ 0.7000
12.5660  10.0000 10.0000
~12.5660 -10.0000  -14.5529

- 0.9425 - 0.7000 - 1.5149
1.0000 2.4400 2.4400
2.0000 1.3900 12.6629
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Normalized Solution Vector for Reduced<Order Observer
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Figure 20. Normalized Solution Vector for Reduced-Order
Observer .
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Normalized Solution Vector for Imperfectly Estimated Parameters
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Figure 21. Normalized Solution Vector for Imperfectly
Estimated Parameters, Reduced Order
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resulted. Figure 22 is a plot of the system response fo£ the
observer network and it shows that the estimation of x, is§ not
very accurate following t=0.2. Again, this may indicate
instability in the observer system and, at least, requires an
additional algorithm to minimize the estimation error before

formulating W and I.

D. REMARKS

In this chapter the use of full-state and reduced-order
observers has been explored for use with the Hopfield network
for cases where the states of a system can not be fully
measured and, therefore, the weight and bias matrices, W and
I, can not be formulated based ¢n actual system states. The
need for a means of estimating certain state responses before
implementing the control laws for the NPS AUV has become
apparent early in it’s design. When the surface dynamics of
the vehicle are considered, it is found that two of the
necessary system states, yaw rate r and heading angle Yy, can
be easily measured with onboard sensors. However, the more
subtle system state called side slip v, is not so easily
measured. For this situation it is desired to adapt an
observer which will estimate v with an acceptable degree of
accuracy. As shown in this report, however, an accurate
observer can not be developed unless there is full knowledge
of the vehicle’s system parameters, which are not now known

and will most certainly be variable in the qourse of vehicle
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Actua] and Estimated System Responses
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Figure 22. Actual and Estimated Responses, Reduced Order
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operation. Since the purpose of this adaptation of the
Hopfield network is for identification of the system

parameters, clearly the use of an observer will be

problematic.
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V. TRACKING OF VARYING SYSTEM PARAMETERS

A. INTRODUCTION

An important situation to pursue in the study of system
parameter identification is that of tracking and correctly
identifying system parameters as they vary during system
operation. Applied to the case of the NPS AUV II, such a
situation may arise when one'of the vehicle’s control surfaces
is lost or damaged. In this case, the dynamics of the vehicle
would certainly change and, in order for the vehicle to
continue to operate, the mission controller would have to
compensate for these alterations and continue to function as
specified. To do so, however, it must have the capability to
accurately track the parameter variations in a timely manner,

In this chapter, the ability of the Hopfield network to
track and identify such varying parameters is explored. For
experimentation the test case in modified form is used where
all states are assumed to be fully measurable., Simple step
changes are imposed on one of the gain parameters, in this

case [B(l)], and the results are plotted and examined.

B. RESULTS
Appendix F contains the code for tracking this system
parameter. Subroutine "system" shows step changes implemented

as simple "IF-THEN" statements, where [B(l)] varies once each
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second from t=0.0 to 5.0. As before, the system response in
terms of its state variables is produced using the MATLAB
integration subroutine "ode23."

The main program "neuobsl" divides the time history into
one~second intervals corresponding to the step changes, then
reads the state variable values over those intervals. The
state variables are used to formulate intermediate W and I
matrices, averaged over the number of time steps within each
interval, and the Hopfield network’s system of ODE’s is
integrated using subroutine "hopobs" to produce a network
solution corresponding to that interval of time., Once all
intermediate network solutions have been generated, they are
assembled into a global solution covering the entire five-
second time period. Figure 23 shows a plot of [V(5)], which is
the element of the network solution which tracks the parameter
of interest. Overlaid on the plot is the actual variation of
(B(1)], which allows the speed and accuracy of the convergence
of the solution to be examined. The figure shows that for the
first three seconds of time, the solution tracks the parameter
values after converging within ©,t=50. This speed of
convergence 1is much slower than for the case when the
parameters remain constant, which for all experiments was on
the order of w,it=20.

Most importantly for this network solution, it can be seen
from the figure that during the fourth, one-second time

interval the error in the tracking element is unacceptably
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Tracking of Varying Gain Parameter [B(1)]
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Figure 23. Tracking of Varying Gain Parameter [B(1)]
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large and, in fact, the network has not achievéd convergence.
to any value within ,t=200. Following this discrepancy,
during the fifth time interval, the spéed of convergence and
accuracy of the solution return to that noted for the first
three time intervals. The behavior of the solution during the
fourth time interval presents a serious 1lapse in the
performance of the network and must be studied more closely.

The data for this network solution is presented in Tables
IV and V in order that the performance of the network during
the fourth time interval may be more closely studied. The
eigenvalues of the weight matrix W shown in Table IV reveal
that for the fourth time interval, two pairs of poles are
extremely close to zero relative to the other pair and to the
pairs of poles for the other time intervals. In addition, the
small error found in the solutions for the other time
intervals is also a product of lack of sufficient excitation.
For the parameter tracking problem it was difficult to ensure
that W would be averaged over the correct number of time steps
because the subroutine "ode23" is a variable-time-interval
integrator. This problem was not fully explored but should be
a subject to pursue in future researchhinvolv1ng parameter
tracking.

Table V shows thét the steady-state solution for the
network element [V(5)] in the fourth time interval is equal to
0.1458 which is not at all close to the expected value for

[(B(1)] of 0.5. The reason behind this isolated discrepancy in
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TABLE IV. EIGENVALUES OF W WHILE TRACKING [B(1)]

TIME EIGENVALUE PAIRS
INTERVAL

0.0 - 1.0 .4024 .5014 .2679
1.0 - 2.0 .1347 .0902 1.1047
2.0 - 3.0 0977 .0475 .7208
3.0 - 4.0 .0035 .0025 .2478

4.0 - 5.0 .0279 .0291 1.0183
S

TABLE V. STEADY STATE VALUES OF V (V,, = W'#I’)
... ]

-.9044 12.5960 -12.5660 -.9425 1.1319 2.0000
-.9120 12.7052 -12.5660 -.9425 5.1165 12,0000
-.9310 12.5098 -12.5660 -.9425 9.9439 2,0000
-.5725 13.5320 -12.5660 ~.9425 0.1458 2.0000
-.7734 12.1978 -12.5660 -,9425 -4,7667 2,0000

network performance lies in the fact that during the time
interval in question, the gain parameter being tracked lies
close to zero, During this period, the system is not being
persistently excited to the extent necessary for the
formulation of an appropriate W, which instead tends toward
singularity. In this case, the network can not be expected to
converge to the proper solution. An attempt was made to
examine an alternate method of integrating the system to
produce the state response. Instead of the variable-time-
interval Runga-Kutta algorithm of "ode23" the system was

integrated using a 1linear, time-invariant, time-response




algorithm with the system converted to discrete form. This
method did not produce results substantially different than
those shown in Tables IV and V.

It can be seen that in order for this network formulation
to be used successfully under conditions of varying system
parameters some adjustment in the software must be designed to
guard against insufficient excitation by the system. It is
apparent that test signals need to be defined to ensure
suitable conditioning of W. A set of persistently exciting
input functions could be stored which would be designed to
maximize the singular values of W, which could be called by
the vehicle’s mission planner in order to optimally "test" the

vehicle’s behavior.
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VI. SUMMARY AND CONCLUSION

A. SUMMARY

At the center of the Naval Postgraduate School’s project
to produce an Autonomous Underwater Vehicle (NPS AUV II) is
the Mission Planning Expert System (MPES), a hierarchical
system to control all operations of the vehicle while
executing its planned mission. An important part of
implementing such an expert system is mapping and successfully
incorporating knowledge of the vehicle dynamics into a
comprehensive vehicle control algorithm. One way of achieving
this goal is through the application of Artificial Neural
Networks (ANN) to identification of the state-space form of
the vehicle’s system parameters.

This thesis has focused on the application of the
continuous form of the Hopfield network to system parameter
identification. In its original form [Ref. 5], Hopfield
presented his network as a discrete-time model of a set of
biological neurons, each of which computes the weighted sum of
the outputs of all other neurbns, including its own, then sets
the output to zero or one depending on whether it is above or
below a set threshold value. In a subsequent paper [Ref. 6],
he presented a continuous form of the model based on the

operation of an electrical RC circuit. In that model, the
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relation between the output of a neuron, termed its state, and
the weighted sum of its inputs plus a bias value, was
characterized by the non-linear sigmoid function, which he
felt bears a superficial resemblance to the manner in which a
biological neuron changes states.

For both models Hopfield sought to prove the network would
always converge to a unique set of outputs based on a distinct
pattern of inputs., To do this he likened the network to a

bounded energy function which, as each neuron changes state,

is monotonically decreasing and eventually seeks a minimum
value,

Shoureshi and Chu used this idea of the minimization of an
energy function while studying the problem cf dynamic system
parameter identification. Their work forms the basis of this
thesis, which is a detailed study of the Hopfield network for
parameter identification with a view toward implementing it
into the control system of NPS AUV II. A linear, time-
invariant system was chosen as a test case to see if the
outputs of a Hopfield network would converge to the known
system parameters, given that the weight and bias matrices, W
and I, are formulated from the system response as shown
herein. As the stability of the network in this form was also
of major concern and not directly inferable from the Hopfield
stability proof, a proof of stability was completed and is
contained in Appendix A. Numerical experiments were conducted

first with the system states fully measurable, then with the
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incorporation of observers to estimate one state variable, and

finally assumihg the states were fully measurable but one

parameter was varying with time.

CONCLUSION

It has been show that

Hopfield networks can solve function minimization
quickly in real time and, in particular, can perform
system parameter identification.

The formulation of the weight matrix W was not possible
for each individual time step because the matrix was at
first singular, meaning that the steady-state value of
the system, which involves the inverse of W, did not
exist. By examining the eigenvalues of W for each time
step it was determined that acceptable performance was
obtained when the state response, used to formulate W,
was first averaged over 50 time steps.

Integration of the network following formulation of the
W and I matrices revealed that the outputs did converge
to the actual values of the system parameters,
Convergence was speeded up to within 2 cycles of the
natural frequency by introducing a scale factor of 50
to multiply W and I.

For the network to Jidentify the actual system
parameters, the range of the non-linear sigmoid
function must encompass the parameters’ expected
values.

Imperfect estimation of parameter matrices when using
full-state and reduced-order observers produced
unacceptable system-state estimation error which led to
incorrect formulations of W and I and inaccurate
network solutions.

The network exhibited an acceptable ability to track
significant changes in system parameters as time
progressed. When the varying gain parameter [B (1)]
dropped to a value close to zero, however, the system
was not being persistently excited and the solution
performance degraded drastically. Inaccuracies in
tracking over all time intervals pointed out the need
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C.

for persistent excitation by the test signal to ensure
that W is well-conditioned. ’

RECOMMENDATIONS

The following topics are presented for possible future

research:

The number of time steps in the respon~s of the system
over which to average W and I should bLe optimized to
minimize the network solution time.

A routine should be included with the sigmoid function
to ensure that its range will always encompass the
expected values of the system parameters without being
excessively large.

Performance of the network should be investigated when
the system input signal contains random noise.

The value of the gain S1 should be optimized to énsure
maximum speed of convergence of the network solution.

Additional experimentation with Hopfield networks and
observers should be conducted including routines to
minimize the error in system state estimation.

Practical issues in test signal amplitude and frequency
content need to be addressed to ensure the appropriate
condition of W.

Hopfield networks should Dbe implemented for

identification of the actual operating parameters of
NPS AUV 1II.
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ﬁ APPENDIX A _
PROOF OF STABILITY OF THE HOPFIELD. NETWORK
FOR PARAMETER IDENTIFICATION

In the system identification problem, the estimation of
erroneous parameters leads to an equation error of the kind,

o, (t) =H(t)V,-%,(t) ; j=1,n

in which the system model and the parameter vector so formed
are obtained as follows.

System equation: k(t) mAx(t) +Bu(t) ; y(t) =C x(t)

Parameter vector definition:
V(t)=[...a, b,...] i=1,ne Ko
where a, and b, are the 1i*® row of the system parameter

matrices, A and B, {f the measurement matrix H(t), is defined
as,

x'(t)ul(t) ocoO.-o 01000000
H(t) =| ...0... x(£)u'(t) ...0... |; eRnenine)
tcoOooo oooOooo 3,(t)\l’(t)

this leads to
X(t) =H(L)V(t) +e (L)

in which the errors e(t) account for measurement noise and
errors due to parameter mismatch.

Definition of a positive definite averaged error squared
energy function, J, leads to
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n
J =AY {ey(t)ef(t))
=i
and in terms of the parameter set V(t),

J=A{[H(t)V(t)-k(t) )/ [B(L}VL(L) =k(t)])

giving
J=V (L)A[R (£) JR(E)V(E) -2V ()A[R/ (E) &/ (£) ) +A [k (t) k(L) ]
Since J is a positive definite function of V(t), convergence

of parameters to a stable set in which J is minimum is
guaranteed if its time derivative is negative.

The required stability condition is then,

dJ , 9J

5 w(t)v(tKO V. V(t), t=[0,00]

Such a condition is met if,
V= -sgn gg)

The Hopfield network can be shcwn to meet that condition
since,

aJ. / - /
- A[R (t)B(t) IV-A[B (t)x(t) )
or,
07 e
v w-I

where, W=A[H (t)H(t)] , and I=A[H (t)%(t)]

Defining g%(t)=-g_? leads to the synaptic excitation

equation of Hopfield,
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O . wv+1r vith V=g(©)

qt
g(©) is always increasing as (8) increases (i.e. g(B) lies in
the 1lst - 3rd quadrant in the @ - V plane), then V=g’ (9)%59'

with g’ (@) always positive. The rzsult demonstrates that J
will seek a minimum as

V(L) =-g/ <e(t>:)3;;(t) ,

which meets the stability condition shown.

REALIZATION OF THE SOLUTION

In spite of the above, convergence of dO/dt to 0 as t
progresses does not always lead to convergence of V(t) to the
correct parameters, and one additional condition is necessary

to impose.

Assume that ©,[-ee,] and define,

Gnax=1im g (@) as O e and g,,=lim g(@) as © <=0

Define V,, as the steady-state solution of V(t) as t become
large.

Define ©,, as the steady-state solution of ©(t) as t becomes
large.

It follows that unless
Onin < vss < gmax

a steady state solution for V does not exist. The point is
illustrated in Figure 21.
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, __APPENDIX B
MAIN PROGRAM FOR HOPFIELD NETWORK
WITH LINEAR ACTIVATION FUNCTION

% Main Program for Hopfield network with linear activation
% function

% program neu

to=0; tf=1; xo0=[1 1];

[tnew, xnew]=o0de23 (' system’ ,to,tf, x0);
nl=50;

t=tnew(l:nl);

x=xnew(l:nl, :);

for i=1l:nl
[ff)=system(t (i) ,x(i,:))s £(i,:)=if; end;
u=sin(t); f=£f/nl;

Xx1=x(:,1)"*x(:,1)/nl;
XxX2=x(:,2)'*x(:,2)/nl;
Xx12=x(:,1)’'*x(:,2)/nl;
xlu=x(:,1)"*u/nl;
x2u=x(:,2)'*u/nl;

uu=u’ *u/nl;

% Calculate average values for weight and bias matrices

W=z2eros (6,6); I=zeros(l,6);

W(l,1l)=xxl; W(1l,2)=xx12; W(1,5)=xlu; W(2,5)=x2u;
W(2,1)=W{1,2); W(2,2)=xXx2; W(3,;3)=xx1; W(3,4)=W{1,2);
W(3;6)=W(1,5); )

W(4,3)=W(2,1); W(4,4)=W(2,2); W(4,6)=x2u; W(5,1)=W(1,5);
W(5,2)=W(2,5);

W(5,5)=uu; W(6,06j=uu; W(6,3)=W(3,6); W(6,4)=W(4,6);
I(1)=x(:,1)"*£(:,1)7 T(2)=x(:,2)"*£(s,1); T(3)=x(:,1)"*£(:,2);
I(4)=x(:,2)"*f(s,2)7 I(B)=u’*f(:,1); I(6)=u’*f(:,2);

% Perform Euler integration on tne Hopfield network
% algorithn.,

at=.02; int=100; sl1=E50;
tho=6nes (1, 6) ;
for i=2:int;
[thdot]=hop (W, I,tho,sl);
th=thdot*dt+tho’;
tho=th’; thpl (i, :)=tho;
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end; .
theta=[-.94248 12.566 ~12.566 -.94248 1 2];
thvec=sqrt (theta*theta’);
for i=1:100; ‘

tvec(i)=dt*i;

thplvec (i)=sqrt (thpl(i, :) *thpl(i,:) ')
end;
wo=sqrt (.9424872+12.566"2);

: plot (wo*tvec,thplvec/thvec) ;

¢ % Subroutine containing Hopfield algorithm
% program hop
function{thdot]=hop(W,I,th,sl)
for i=1:6

V(i)=th(i);
end;

V=[V(1) V(2) V(3) V(4) V(5) V(6)]';
thdot==s1*W*V+sl*I’;

% Subroutine containing state-space formulation of test case
% program system
function([f)=system(t, x)

u=sin(t);

A=[-.94248 12.566;-12.566 =-.94248]); B=[1;2];
£1=A(1,1)*x(1)+A(1,2)*x(2) +B (1) *u;
£2=A(2,1)*x(1)+A(2,2) *x (2) +B(2) *u;

f={f1 £2);

17




APPENDIX C
MAIN PROGRAM FOR HOPFIELD NETWORK
WITH SIGMOID ACTIVATION FUNCTION

$ Main Program for Hopfield network with sigmoid activation
% function’

% program neu2sig

to=0; tf=1; xo0=[1 1];

[tnew, xnew]=0de23 (' system’,to,tf,x0);
nl=50;

t=tnew(li:nl);

x=xnew(l:nl,:);

for i=1:nl
(ff)=system(t(i),x(i,:))s £(i,:)=£f£f; end;
u=sin(t); f=£f/nl;

xx1=x(:,1)"*x(:,1)/nl;
x¥X2=xX(:,2)"'*x(:,2)/nl;
®x12=x(:,1)'*x(:,2)/nl;
®lu=x(:, 1)’ *u/nl;
x2u=x(:,2)’*u/nl;

uu=u’ *u/nl;

% Calculate average values for weight and bias matrices

W=zeros(6,6); I=zeros(l,6);

W(l,1)=xx1; W(1,2)=xx12; W(l,5)=xlu; W(2,5)=x2u;
W(2,1)=W(1,2); W(2,2)=xx2; W(3, 3) =xx1; W(3,4)=W(1,2);
W(3,6)=W(1,5);

wW(4,3)=W(2,1); W(4,4)=W(2,2); W(4,6)=x2u; W(5,1)=W(1,5);
W(5,2)=W(2,5);

W(5,5)=uu; W(6,6)=uu; W(6,3)=W(3,6); W(6,4)=W(4,6);
I(L)=x(:,1)"*£(:,1); I(2)=x(:,2)"'*f(:,1); I(3)=x(:,1)'*£(:,2);
I(4)=x(:,2)'*£(:,2); I(5)=u’*f(:,1); I(6)=u’*f(:,2);

§ Perform Euler integration on the Hopfield network
% algorithm.,

dt=.02; int=100; s1=50; 1lmda=0.1; G=20;
tho=ones (1, 6);
for i=2:int;
[thdot,V]=hop2sig (W, I, tho,sl,1lmda,G);
th=thdot*dt+tho’;
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tho=th’; thpl(i,:)=tho; tvec(i)=dt*i;
Vpl(i, :)=V'; thss(i,:)=(inv(=W)*1")’
end; i o
theta=[-.94248 12.566 -12.566 -.94248 1 23};
thvec=sqrt (theta*theta’); .
for i=1:6;
Vvpl(:,1i)=Vpl(:,1i)/theta(i);
end;
wo=sqrt (.94248%2+12.566"2);
plot (wo*tvec,VVpl);

.
14
3
’

% Subroutine containing Hopfield algorithm
& program hop2sig
function[thdot,V]=hopZSig(W,I,th,sl,lmda,G)
for i=1:6

V(i) =G* (2/ (1+exp (~lmda*th(i)))-1);
end;

V=[V(1) V(2) V(3) V(4) V(5) V(6)]';
thdot=-sl*W*V+sl*1’;

% Subroutine containing state-space formulation of test case
% program system

function([f]=system(t, x)

u=sin(t);

A=[-,94248 12.566;-12,.566 -.,94248); B=[1;2];
£f1l=A(1,1)*x(1)+A(1,2)*x(2)+B (1) *u;

£2=A(2,1)*x(1)+A(2,2) *x(2)+B(2) *u;
f=[(f1 £2);
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APPENDIX D
MAIN PROGRAM FOR HOPFIELD NETWORK
WITH SIGNOID ACTIVATION FUNCTION
AND FULL-STATE OBSERVER

function and full-state observer

program neuobs
Development of state variable time history

oP 0P op dP

to=0; tf=1; xo0=[(1 11 1});

[tnew, xnew] =0de23 (' observer’,to,tf, x0);
nl=50;

t=tnew/(l:nl);

x=xnew(l:nl,:);

for i=1l:nl
(ff]=observer(t(i),x(i,:)):; £(i,:)=£ff; end;
u=sin(t); £=£f(:,3:4)/nl;

xx1=x(:,3)"*x(:,3)/nl;
xx2=x(:,4)"*x(:,4)/nl;
Xx12=x(:,3)"*x(:,4)/nl;
xlu=x(:,3)’*u/nl;
x2u=x(:,4)’'*u/nl;

uu=u’ *u/nl;

% Calculate averagé values for weight and bias matrices

W=zeros (6,6); I=zeros(l,6);

W(l,1)=xx1l; W(1l,2)=xx12; W(1,5)=x1lu; W(2,5)=x2u;
W(2,1)=W(1,2); W(2,2)=xx2; W(3,3)=xx1; W(3,4)=W(1,2);
w(3l 6)=W(1,5);

WL, 3)=W(2,1); W(4,4)=W(2,2); W(4,6)=x2u; W(5,1)=W(1,5);
W(5,2)=W(2,5); :

W(5,5)=uu; W(6,6)=uu; W(6,3)=W(3,0); W(6,4)=W(4,6);
I(L)=x(:, )" *£(:,1); I(2)=x(:,2)'*£(:,1); I(3)=x(:,1)'*£(:,2);
I(4)=x(:,2)"*£(:,2); I(S)=u’*f(:,1); I(6)=u’*f(:,2);

% Perform Euler integration on the Hopfield network
% algorithm.

dt=.02; int=100; s1=50; 1lmda=0.1; G=20;
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tho=zeros (1,6);
for i=2:int; ,
[thdot, V]=hopobs (W, I, tho, sl, lmda,G) ;
th=thdot*dt+tho'; _
tho=th”; thpl(i,:)=tho; tvec(i)=dt*i;
Vpl(i, :)=V’; thss(i,:)=(inv(-W)*I")’;
end;
theta=[-.94248 12.566 -12.566 -.94248 1 2];
thvec=sqrt(theta*theta’);
for i=1:6;
VVpl(:,i)=Vpl(:,1i)/theta(i);
end; 7
wo=sqrt (.9424872+12.5662); plot (wo*tvec,VVpl);

% Subroutine containing Hopfield algorithm
% program hopobs
function({thdot,V)=hopobs (W, I,th,sl,lmda,G)
for i=1:€

V(i)=G*(2/ (l+exp (=1lmda*th(i)))-1);
end;

7

V=[V(1) V(2) V(3) V(4) V(5) V(6)]';
thdot=-sl*W*V+sl1*I’;

% Subréutine containing state-space formulation of test case
% and full-state observer

% program observer

function[f)=observer (t, x)

u=sin(t):

A=[-.94248 12.566;-12.566 -.94248]); B={1;2]); C=[0 1];
Ao=[-.7 10;-10 -.7}; Bo=[2.44;1.39]; Co=[0 1];

% Ao=A; Bo=B;

Q=eye(2); R=.01;

xx=x(1:2)'; xhat=x(3:4)';

(K,s]l=lqr (Ao,Bo,Q,R);

xxdot=A*xx+B*u;
xhatdot=(A0-K’ *Co) *xhat+Bo*u+K’ *Co*xx;

f={xxdot’ xhatdot’]};
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APPENDIX K
MAIN PROGRAM FOR HOP'IILD NETWORK
WITH SIGMOID ACTIVATION FUNCTION
AND REDUCED-ORDER OBSERVER

Main Program for Hopfield network with sigmoid activation
function and reduced-ordér observer

program neuobs
Development of state variable time history

L J90 oe

to=0; tf=1; xo=[1 1 1};

(tnew, xnew]=0de23 (' observer’,to,tf, x0);

nl=50;

t=tnew(l:nl);

X=xnew(l:nil,:);

for i=1l:nl
[ff]l=observer(t(i),x(i,:)
£(i,0)=££(3); £(i,2)=££(2

end;

u=sin(t); f£=£f/nl;

)3
)2

xxX1=x(:,3)'*x(:,3)/nl;
Xx2=x(:,2)"'*x(:,2)/nl;
Xx12=x(:,3)"'*x(:,2) /nl;
xlu=x(:,3)’ *u/nl;
x2u=x(:,2)’ *u/nl;

uu=u’ *u/nil;

% Calculate average values for weight and bias matrices

W=zeros(6,6); I=zeros{(l, 6);

W(l,1)=xxl; W(1,2)=xx12; W(l,5)=x1lu; W(2,5)=x2u;
W(2,1)=W(1,2); W(2,2)=xx2; W(3,3)=xx1; W(3,4)=W(1,2);
W(3,6)=W(1,5);

W(4,3)=W(2,1); W(4,4)=W(2,2); W(4,6)=x2u; W(5,1)=W(1,5);
W(5,2)=W(2,5);

W(5,5)=uu; W(6,6)=uu; W(6,3)=W(3,6); W(6,4)=W(4,6);
I(L)=x(:,1)"*£(:,1); I(2)=x(:,2)"*£(s,1); I(3)=x(:,1)'*£(:,2);
I(4)=x(:,2)'*£(:,2); I(S5)=u’*f(:,1); I(6)=u’'*f(:,2);

% Perform Euler integration on the Hopfield network
% algorithm.

dt=.02; int=100; s1=50; 1mda=0.1; G=20;
tho=zeros(1,6);
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for i=2:int; ‘
[thdot, V]=hopobs (W, I, tho,sl,1lmda,G);
th=thdot*dt+tho’;
tho=th’; thpl(i,:)=tho; tvec(i)=dt*i;
Vpl(i,:)=V'; thss(i,:)=(inv(-W)*I')’;
end;
theta=[-.94248 12.566 ~12.566 ~-.94248 1 2];
thvec=sqgrt (theta*theta’);
for i=1:6;
VVpl(:,1i)=Vpl(:,1i)/theta(i); end; ,
¢ wo=sqrt (.9424872+12.566"2); plot (wo*tvec,VVpl);

3 % Subroutine containing Hopfield algorithm
% program hopobs
function([thdot,V]=hopobs (W,I,th,sl,1lmda,G)
for i=1:6
V(i)=G*(2/ (1+exp(-lmda*th(i)))-1);
endy

V=[V(1) V(2) V(3) V(4) V(5) V(6)]';
thdot=-sl*W*V+sl*1’/;

% Subroutine containing state-space formulation of test case
% and reduced-order observer

% program observer

function([f]=observer (t, x)

u=sin(t);

A=[-,94248 12.566;-12.566 -.94248}; B=[1;2); C=({0 1];
Ao=[-.7 10;-10 -.7]); Bo={2.44;1.39]; Co=[0 1]:

% Ao=A; Bo=B;

Q=eye(l); R=.01;

xxX=x(1:2)'; xlhat=x(3);

xxdot=A*xx+B*u;
xlhatdot=Ao0(1,2) *x(2)+Ao (1, 1) *xlhat+Bo (1) *u;

f=[xxdot’ xlhatdot];
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APPENDIX F
MAIN PROGRAM FOR HOPFIELD NETWORK
WITH SIGMOID ACTIVATION 'UHCTIGN
TRACKING VARIATION IN GAIN PARAMETER 8(1)

Main Program for Hopfield network with sigmoid activation
function tracking variation in gain parameter B(1)

0=0; tf=1; xo={(1 1}];

%
%
$ program neuobsl
to=
for a=1:5;

if a==1; to=0; tf=1;
elseif a==2; to=l; tf=2;
elseif a==3; to=2; tf=3;
elselif a==4; to=3; tf=4;
elseif a==5; to=4; tf=5;

end;

[t,x]=0de23 (' system’,to,tf,x0);
[nl,pl=size(t); xo=x(n1,.),

for i=1:nl
[ff]l=system(t(i),x(1,:)); £(i,:)=ff; end;
u=sin(t); f=£f/nl;

XxX1l=x(:,1)"*x(:,1)/nl;
XX2=x(:,2)'*x(:,2)/nl;
Xx12=x(:,1)"*x(:,2)/nl;
xlu=x(:,1)’*u/nl;
x2u=x(:,2)'*u/nl;
uu=u’*u/nl;

% Talculate average values for weight and bias matrices

W=zeros (6, 6); I=zeros(l,6):;

W(l,1)=xxl; W(1,2)=xx12; W(1,5)=xlu; W(2,5)=x2u;
W(2,1)=W(1,2); W(2,2)=xx2; W(3, 3)=xxl; W(3,4)=W(1,2);
W(3,6)=W(1,5);

W(4,3)=W(2,1); W(4,4)=W(2,2); W(4,6)=x2u; W(5,1)=W(1,5);
W(5,2)=W(2,5);

W(5,5)=uu; W(6,6)=uu; W(6,3)=W(3,6); W(6,4)=W(4,6);
I(D)=x(:, 1) *£(:,1); T(2)=x(:,2)"*E(:,1); I(3)=x(:,1)"*£(:,2);
I(4)=x(:,2)"*E(:,2); I(5)=u’*f(:,1); I(6)=u’'*f(:,2);

% Perform Euler integration on the Hopfield network
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% algorithm.

dt=.02; int=1000; s1=50; lmda=0.1; G=20;
tho=ones (1, 6).;
for i=2:int; ‘

[thdot, V])=hopobs (W, I,tho,sl,1lmda,G);

th=thdot*dt+tho’ ;

tho=th’; thpl (i, :)=tho; Vpl(i,:)=V’; end;
theta=[-:94248 12.566 -12.566 -.94248 1 2];
thvec=sqrt (theta*theta’’);
wo=sqrt (.94248"2+12.566"2);

d tvec=dt*[1:5000]";
3 gainb(:,a)=Vpl(:,5);
for ig=1:5;
j=1000*ig;
k=1000*1g-999;
gb(k:j)=gainb(:,ig);
end;
for i=1:1000; BB(i)=1.0; end;
for i=1001:2000; BB(i)=5.0; end;
for 1=2001:3000; BB(i)=10.0; end;
for 1=3001:4000; BB(i)=0.5; end;
for i=4001:5000; BB(1)=-5.0; end;
plot (wo*tvec, BB, wo*tvec,gb);
% Subroutine containing Hopfield algorithm
% program hopobs
function([thdot,V)=hop (W, I,th,sl,1lmda,G)
for i=1l:6
V(i)=G*(2/ (1+exp(-lmda*th(i)))-1);
end;
V=[V (1) V(2) V(3) V(4) V(5) V(6)]';
thdot=-s1*W*V+sl*I’;
¢
¢ % Subroutine containing state-space formulation of test case
- % with step changes in gain parameter B(l)

% program system

function[f]=system(t, %)
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u=sin(t); L .
A=[-.94248 12.566;-12.566 -.94248); B=[1;2];

if t>=1.0 & t<2.0; B=[5;2
elseif t>=2.0 & t<3.0; B=[10;
elseif t>=3.0 & t<4.0; B=[0.5
elseif t>=4.0 & t<5.0; B=[-5.
end; ,

XX=x(1:2)';

xxdot=A*xx+B*u;
=xxdot’;
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